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Modelling	of	Trace	Element	Behaviour	in	Igneous	
Systems	

	
Course	Objectives	
	
When	you	have	completed	this	course	you	should	be	able	to:	
	
1.	 understand	 the	 principles	 behind	 petrogenetic	 modelling	 using	 trace	
elements;	

2.	predict	how	trace	elements	will	behave	during	mantle	melting	and	during	
passage	of	magma	through	the	crust;	
3.	 use	 EXCEL	 to	 carry	 out	 simple	modelling	 of	 mantle	melting	 and	magma	
chamber	processes	

	
Syllabus	
	
Session	1:	Modelling	Mantle	Melting.		
	
1	Partition	Coefficients	
	
2.	Mantle	Melting	
		2.1	Definitions	
		2.2	Batch	Melting	
		2.3	Fractional	Melting	
		2.4	Mantle	Depletion	
		2.5	Incremental	Melting	and	Melting	Columns	
	
3.	Practical:	Modelling	Mantle	Melting	using	EXCEL	
	
Session	2:	Modelling	Magma	Chamber	Processes	
	
4.	Mixing	
	
5.	Crystallization	and	Assimilation	
		5.1	Fractional	Crystallization	
		5.2	Recharge	and	Fractional	Crystallization	(RFC)	
		5.3	Assimilation	+	Fractional	Crystallization	(AFC)	
		5.4	EC-RAFC	
	
6.	Practical:	Modeling	Magma	Chamber	Processes	using	EXCEL	
.	
	
Note:	The	number	of	practical	exercises	covered	will	depend	on	the	length	of	the	
course	and	the	background	of	individual	students.	It	will	not	be	necessary	to	

complete	all	exercises.	 	
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Section	1:	Modelling	Mantle	Melting	

	
1.	Partition	Coefficients	
	
1.1	Partition	Coefficients:	Definitions	
	
For	trace	element	modelling,	we	need	to	understand	the	partitioning	of	trace	
elements	between	minerals	and	melt.	
	
A	mineral/melt	 partition	 coefficient	 for	 a	 given	 element	 is	 written	 Ki/l	
where	i	is	a	mineral	and	l	is	a	liquid	(the	melt).	
	
More	generally,	we	are	interested	in	the	bulk	distribution	coefficient	for	a	
given	element,	which	 is	written	as	D.	This	 is	 the	sum	of	 individual	partition	
coefficients	weighted	according	to	their	mass	fractions,	Xi.		
	

𝑫 = 𝑿𝒊

𝒏

𝒊!𝟏

𝑲𝒊/𝒍	

	
If	D>1,	the	element	is	compatible	
If	D<1,	the	element	is	incompatible	
	
A	simple	example	 is	shown	below	for	 the	bulk	distribution	coefficient	of	Sr	
during	 crystallization	 of	 olivine	 (Kol=0.01),	 clinopyroxene	 (Kcpx=0.2)	 and	
plagioclase	(Kpl=2)	in	mass	proportions	0.2:0.3:0.5.	
	

	
	

Wt.	
proportions	

Sr	partition	
coefficients	

Xol=0.2	 Kol=0.01	
Xcpx=0.3	 Kcpx=0.2	
Xpl=0.5	 Kpl=2.0	

	
DSr	=	0.2*0.01	+	0.3*0.2	+0.5*2	=	1.06	

	
Therefore	Sr	is	slightly	compatible	
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1.2	Partition	Coefficients:	Dependencies	
	
1.2.1	Variables	
	
Partition	coefficients	may	depend	on:	
	
Temperature	(T)	
Pressure	(P)	
Melt	composition	(Xl)	
Mineral	composition	(XM)	
Oxygen	fugacity	(fO2)	
	
Thus	choosing	partition	coefficients	appropriate	for	the	system	in	
question	is	particularly	important.	
	
A	key	decision	is	whether	to	keep	partition	coefficients	constant	in	a	
model	or	whether	to	allow	them	to	vary	as	P,	T	etc.	change.	
	
1.2.2	Patterns	of	Trace	Element	Partitioning	
	
	

	
	
	
Onuma	 et	 al.	 (1968)	 and	 Jensen	 (1973)	 wrote	 key	 papers	 on	 patterns	 of	
trace	element	partitioning.	
	
	Log	(Ki/l)	v	ionic	rdius	reveals	a	parabolic	relationship	for	each	ionic	
charge.		

The	peak	of	each	parabola	 is	 the	optimum	 radius	 for	 a	 cation	 site	 in	 the	
mineral.	
	
	

!
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1.2.3	Prediction	of	Partition	Coefficients	
	
Wood	and	Blundy	(1997)	found	that	predicting	 the	optimum	site	and	 the	
shape	 of	 the	 parabola	would	 enable	 all	 the	 partition	 coefficients	 to	 be	
known.	
	
	

	
	
It	 is	 possible	 to	 use	 the	major	 element	 composition	 of	 the	 mineral	 to	
determine	 the	 optimum	 site	 radius,	 and	 the	 elasticity	 of	 the	 mineral	
structure	to	determine	parabola	shape.		
	
1.3	Choosing	Partition	Coefficients	
	
Partition	coefficients	may	be	chosen	by	one	or	more	of:	
	
1.	Finding	values	determined	by	experiments	 or	measurements	 that	best	
match	the	problem	in	hand.	

	
2.	 Using,	 or	 making	 one’s	 own,	 compilations	 based	 on	 all	 reliable	 data	
relevant	to	the	problem	at	hand.	
	
3.	 Using	 the	 Wood	 and	 Blundy	 (1997)	 method	 based	 on	 the	 parabolic	
patterns	 of	 trace	 element	 partitioning	 (can	 also	 use	 to	 extrapolate	 from	
incomplete	partitioning	data)	.	
	
4.	 Using	 thermodynamic	 methods	 such	 as	 those	 of	 Gaetani	 and	 Grove	
(1995)	 based	 on	 the	 calculation	 of	 partition	 coefficients	 expressed	 as	
equilibrium	constants.	
	
Essentially:	the	more	effort	put	in	to	find	optimum	partition	coefficients,	the	
better	the	model.	In	this	course,	partition	coefficients	will	be	provided.	
	

!
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2.	Mantle	Melting	
	
2.1	Definitions	
	
To	 model	 mantle	 melting,	 we	 need	 to	 know	 (in	 addition	 to	 the	 partition	
coefficients)	 the	 relative	 contributions	of	 the	different	minerals	 to	 the	melt.	
These	are	termed	the	reaction	coefficients,	pi.	
	
The	bulk	reaction	coefficient	for	a	given	element,	written	as	P,	is	the	sum	of	
individual	partition	coefficients	weighted	according	to	the	reaction	
coefficients.	
	

	
	
Modelling	then	depends	on	the	type	of	melting	chosen:	

	
Batch	melting:		the	melt	is	in	equilibrium	with	the	mantle	residue	until	in	

separates	from	it	(segregates)	and	intrudes	into	the	crust	
	

Fractional	melting:	the	melt	separates	from	the	mantle	residue	as	soon	as	it	
is	formed	and	contributes	to	a	melt	channel,	which	supplies	melt	to	the	crust	

	
Critical	melting:	melting	is	fractional	but	the	mantle	has	a	porosity	so	that	a	

small	proportion	is	retained	in	pores	before	extraction.	
	

Incremental	melting:	increments	of	melt	stay	in	equilibrium	with	the	mantle	
residue	before	they	separate	and	contribute	to	the	melt	channel.	

	
	
and	on	where	the	melting	takes	place,	when	it	might	be:	
	

isobaric	(melting	all	at	the	same	depth)	
or	polybaric	(melting	over	a	range	of	depths	as	in	a	melting	column)	
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2.2	Batch	Melting	
	

	
	
F=	mass	fraction	of	melt;	C	=	concentration	of	a	given	element	in	the	
mantle	source	(o),	melt	(l)	and	residual	solid	(s).	

Mass	balance	requires	that:	Co=	FCl	+	(1-F)Cs	
By	definition:	Cs	=	DCl	
So	we	get	the	batch	melting	equation:	
	

𝑪𝒍
𝑪𝟎

=
𝟏

𝑭+𝑫− 𝑭𝑫	

	

For	constructing	a	melting	curve,	the	problem	is	that	D	changes	as	melting	
progresses.	 If	 the	phases	 enter	 the	melt	 in	 a	 given	proportion	 (pi),	 this	
can	be	dealt	with	simply	using	the	initial	bulk	distribution	coefficient,	Do	
and	the	bulk	reaction	coefficient	P:	

𝑫𝒐 = 𝑿𝒊𝒐
𝒏

𝒊!𝟏

𝑲𝒊/𝒍	

	

𝑷 = 𝑷𝒊

𝒏

𝒊!𝟏

𝑲𝒊/𝒍	

	
which	gives	the	general	batch	melting	equation:	
	

𝑪𝒍
𝑪𝟎

=
𝟏

𝑭+𝑫𝒐 − 𝑭𝑷
	

	
For	example,	spinel	 lherzolite	mantle	containing	10	ppm	Sr	is	made	up	of	
60%	olivine,	25%	orthopyroxene	and	15%	clinopyroxene	which	melts	in	
proportions	2:	 1:	 7.	Calculate	 the	Sr	content	of	 the	magma	 formed	by	20%	
batch	melting	given	partition	coefficients	of	0.01	for	ol/l,	0.05	for	opx/l	and	
0.2	for	cpx/l.	
	

	

𝑪𝒍 =
𝟏𝟎

𝟎.𝟐+ 𝟎.𝟎𝟒𝟖𝟓− 𝟎.𝟐 ∗ 𝟎.𝟏𝟒𝟕 = 𝟒𝟓.𝟔 𝒑𝒑𝒎	

	 Xi	 pi	 Ki/l	 piKi/l	 XiKi/l	
olivine	 0.6	 0.2	 0.01	 0.002	 0.006	
orthopyroxne	 0.25	 0.1	 0.05	 0.005	 0.0125	
clinopyroxene	 0.15	 0.7	 0.2	 0.14	 0.03	
	 	 	 	 P=0.147	 Do=0.0485	
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2.3	Fractional	Melting	
	
In	pure	fractional	melting,	the	melt	leaves	the	mantle	as	soon	at	it	is	formed.	It	
then	accumulates	to	form	pooled	fractional	melt.	
	

	
	
The	pooled	(accumulated)	melt	composition,	𝑪𝒍 is	given	by	the	expression	
(from	Shaw,	1970):	

𝑪𝒍
𝑪𝒐

=
𝟏
𝑭 𝟏− 𝟏−

𝑷𝑭
𝑫𝒐

𝟏
𝑷
	

where,	as	before:	

𝑫𝒐 = 𝑿𝒊𝒐
𝒏

𝒊!𝟏

𝑲𝒊/𝒍	

	

𝑷 = 𝑷𝒊

𝒏

𝒊!𝟏

𝑲𝒊/𝒍	

	
In	 critical	 fractional	 melting	 ,	 the	 mantle	 has	 a	 porosity	 so	 that	 there	 is	
always	 trapped	 melt	 present.	 This	 may	 be	 modelled	 using	 the	 fractional	
melting	 equations	 but	 calculating	 D	 by	 treating	 the	 trapped	 melt	 as	 a	
mineral	with	a	D	value	of	1	and	a	reaction	coefficient	of	0.	
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For	example,	spinel	 lherzolite	mantle	containing	10	ppm	of	Sr	 is	made	up	
of	60%	olivine,	25%	orthopyroxene	and	15%	clinopyroxene	which	melts	
in	proportions	2:	1:	7.		

Calculate	 the	 Sr	 content	 of	 the	magma	 formed	 by	20%	 fractional	 melting	
given	partition	coefficients	of	0.01	for	ol/l,	0.05	for	opx/l	and	0.2	for	cpx/l.	

	

𝑪𝒍
𝑪𝒐

=
𝟏
𝑭 𝟏− 𝟏−

𝑷𝑭
𝑫𝒐

𝟏
𝑷
= 𝟒𝟗.𝟗 𝒑𝒑𝒎 (𝑭 = 𝟎.𝟐)	

	
Pooled	 fractional	 melting	 thus	 gives	 higher	 melt	 concentrations	 of	
incompatible	 elements	 than	 batch	 melting.	 This	 is	 because	 the	 melt	
released	has	no	opportunity	to	r-equilibrate	with	the	mantle.	
	
Critical	 fractional	melting	may	be	calculated	by	 inserting	a	row	for	a	new	
phase	melt	with	a	melting	rate	(p)	of	0	and	a	partition	coefficient	(K)	of	1.	Its	
proportion	is	the	porosity	expressed	as	a	mass	fraction,	here	0.02.	A	new	
column	 (Xi’)	 is	 also	 needed	 to	 multiply	 the	 mineral	 proportions	 by	 (1-
porosity)	so	that	the	phases	still	sum	to	100%:	
	

		 Xi	 X’i	 pi	 Ki/l	 P=piKi/l	 Do=XiKi/l	
olivine	 0.60	 0.588	 0.2	 0.01	 0.002	 0.00588	

orthopyroxene	 0.25	 0.245	 0.1	 0.05	 0.005	 0.01225	
clinopyroxene	 0.15	 0.147	 0.7	 0.20	 0.14	 0.0294	

melt	 		 0.02	 0	 1.00	 0	 0.02	
		 		 		 		 		 P=0.147	 Do	=0.067	

	
The	same	calculation	is	then	carried	out	for	the	new	value	of	Do.	
	

𝑪𝒍
𝑪𝒐

=
𝟏
𝑭 𝟏− 𝟏−

𝑷𝑭
𝑫𝒐

𝟏
𝑷
= 𝟒𝟗.𝟎 𝒑𝒑𝒎 (𝑭 = 𝟎.𝟐)	

	
Because	this	new	value	of	Do	is	higher	than	in	pure	fractional	melting,	the	
concentrations	of	incompatible	elements	in	the	melt	are	lower.	
	
Note	that	setting	the	melt	 fraction	to	0	in	the	critical	melting	grid	above	is	
the	same	as	having	pure	fractional	melting,	Thus	the	grid	can	be	used	for	
both	types	of	melting.	 	

	 Xi	 pi	 Ki/l	 piKi/l	 XiKi/l	
olivine	 0.6	 0.2	 0.01	 0.002	 0.006	
orthopyroxene	 0.25	 0.1	 0.05	 0.005	 0.0125	
clinopyroxene	 0.15	 0.7	 0.2	 0.14	 0.03	
	 	 	 	 P=0.147	 Do=0.0485	
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2.4		Melting	Trends	
	
Rather	than	calculating	single	values,	it	is	useful	to	calculate	melting	trends.	
These	 can	 show	 how	 elements	 or	 element	 ratios	 vary	 with	 degree	 of	
melting	 (F),	or	 they	can	be	trends	 on	 element-element	 or	 element	 ratio	
plots.	
	
To	 calculate	 melting	 trends,	 it	 is	 necessary	 to	 first	make	 a	 Table	 with	 a	
column	for	F	and	a	column	for	the	calculated	value	of	cl.	For	the	simpler	
batch	melting	equation,	the	equation	can	be	written	as	a	single	expression..		
	

𝑪𝒍
𝑪𝟎

=
𝟏

𝑭+𝑫𝒐 − 𝑭𝑷
	

	
F	 Cl(Sr)	

0.01	 175.35	
0.02	 152.53	
0.03	 134.97	
0.04	 121.04	
0.05	 109.71	
0.06	 100.32	
etc	 etc.	
0.20	 45.64	

	
For	 the	more	 complex	 fractional	melting	 equation	 it	may	be	 a	 good	 idea	 to	
break	 the	 equation	 into	 its	 parts	 so	 that	 errors	 are	 easier	 to	 find	 and	
correct	–	as	shown	in	the	columns	below.			
	
The	fractional	(critical)	melting	calculation	is	given	below	using	the	equation,	
and	values	of	P	and	Do	and	porosity	 from	 the	previous	page.	The	mantle	Sr	
concentration	is	10ppm	as	before.	
	

𝑪𝒍
𝑪𝒐

=
𝟏
𝑭 𝟏− 𝟏−

𝑷𝑭
𝑫𝒐

𝟏
𝑷
	

	
F	 1/F	 1/P	 PF/Do	 CSr	

0.01	 100.00	 6.80	 0.02	 139.05	
0.02	 50.00	 6.80	 0.04	 130.63	
0.03	 33.33	 6.80	 0.07	 122.78	
0.04	 25.00	 6.80	 0.09	 115.48	
0.05	 20.00	 6.80	 0.11	 108.67	
0.06	 16.67	 6.80	 0.13	 102.35	
etc.	 	 	 	 etc.	
0.20	 5.00	 6.80	 0.44	 48.98	

	
The	trends	for	Sr	against	F	for	batch	melting,	pure	fractional	pooled	melting	
and	 critical	 fractional	 pooled	melting	 (2%	porosity)	 are	 shown	on	 the	next	
page.		
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Note	that	differences	 in	the	type	of	melting	are	greatest	 in	 this	case	 for	
low	degrees	of	melting.	At	higher	degrees	of	melting,	differences	are	small.	
	
There	are	many	examples	of	application	of	melting	trends.	In	the	one	below,	
modelling	of	element	ratios	is	used	to	determine	the	depth	and	degree	
of	melting	of	some	magmas	form	western	Turkey.	They	show	a	low	degree	
of	 melting	 (<10%)	 of	 deep	mantle	 (garnet	 lherzolite)	 that	 has	 an	 enriched	
composition	(WAM	=	Western	Anatolia	Mantle).		
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2.5	Modelling	the	Mantle		
	
Just	as	equations	can	be	written	to	calculate	trace	element	concentrations	in	
the	 magma	 produced	 by	 partial	 melting,	 so	 equations	 can	 be	 written	 to	
calculate	the	concentrations	of	trace	elements	in	the	mantle	residues.	As	
would	be	expected,	there	are	different	equations	 for	batch	and	fractional	
melting.	
	
As	before:	
	
Co	=	concentration	of	a	trace	element	in	the	original	mantle		
Cs	=	concentration	of	a	trace	element	in	the	solid	mantle	residue	
Cl	=	concentration	of	a	trace	element	in	the	melt	
F	=	degree	of	partial	melting	
Do=	initial	bulk	distribution	coefficient	
P=	bulk	reaction	coefficient	
	

Depletion	by	Batch	Melting	
	

	
	

𝑪𝒔
𝑪𝟎

=
𝑫𝒐 − 𝑷𝑭
𝟏− 𝑭

𝟏
𝑫𝒐 + 𝑭 𝟏− 𝑷 	

	
Depletion	by	Pooled	Fractional	Melting	

	

	
	

𝑪𝒔
𝑪𝒐

=
𝟏

𝟏− 𝑭 𝟏−
𝑷𝑭
𝑫𝒐

𝟏
𝑷
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2.5.1	Mantle	Depletion	Calculations	
	

	
	
Batch	Melting	(Sro=10ppm,	F=0.2,)	
	

𝑪𝒔
𝑪𝟎

=
𝑫𝒐 − 𝑷𝑭
𝟏− 𝑭

𝟏
𝑫𝒐 + 𝑭 𝟏− 𝑷 	

	
Batch	melting:	Cs=1.09	ppm	

	
Pure	fractional	melting	(Sro	=10ppm,	F=0.2)	
	

𝑪𝒔
𝑪𝒐

=
𝟏

𝟏− 𝑭 𝟏−
𝑷𝑭
𝑫𝒐

𝟏
𝑷
	

	
Pure	fractional	melting:	Cs=0.02	ppm	

	
Critical	fractional	melting	(Sro	=10ppm,	F=0.2,	porosity	=	2%)	
	

		 Xi	 Xi	 pi	 Ki/l	 P=piKi/l	 Do=XiKi/l	
olivine	 0.60	 0.588	 0.2	 0.01	 0.002	 0.00588	

orthopyroxene	 0.25	 0.245	 0.1	 0.05	 0.005	 0.01225	
clinopyroxene	 0.15	 0.147	 0.7	 0.20	 0.14	 0.0294	

melt	 		 0.02	 0	 1.00	 0	 0.02	
		 		 		 		 		 0.147	 0.06753	

	
Critical	melting:	Cs=0.27	ppm	

	
Pure	 fractional	 melting	 gives	 the	 greater	 depletion	 of	 incompatible	
elements	in	the	mantle	residue.	Batch	melting	gives	the	least.	
	
Note:	the	type	of	melting	is	much	more	important	for	peridotites	than	for	
basalts.	
	 	

	 Xi	 pi	 Ki/l	 piKi/l	 XiKi/l	
olivine	 0.6	 0.2	 0.01	 0.002	 0.006	
orthopyroxene	 0.25	 0.1	 0.05	 0.005	 0.0125	
clinopyroxene	 0.15	 0.7	 0.2	 0.14	 0.03	
	 	 	 	 P=0.147	 Do=0.0485	
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2.5.2	Mantle	Depletion	Trends	
	
As	 with	 melts,	 it	 is	 possible	 to	 construct	 trends	 to	 show	 how	 mantle	
compositions	change	with	increasing	degree	of	partial	melting.	
	

	
	
	
There	 are	many	 published	 examples	 of	 how	mantle	modelling	 can	 improve	
our	 understanding	 of	 exposures	 of	 mantle	 rocks.	 The	 plot	 below	 applies	
modelling	 to	 the	 interpretation	of	mantle	 rocks	 from	 the	Troodos	Massif.	 It	
was	modelled	using	the	batch	melting	equation	(green	line)	and	fractional	
melting	equation	(brown	line)	in	spinel	and	garnet	(red	line)	facies.	
	
The	modelling	distinguishes	between	spinel	and	garnet	faces	(i.e.	depth	of	
melting)	and	type	of	melting	(batch	or	fractional).	It	shows	that	c.	20-25%	of	
critical	fractional	melting	best	explains	the	compositions.	
	
	

	 	

0	

2	

4	

6	

8	

10	

0	 0.05	 0.1	 0.15	 0.2	

Sr
	p
pm

		

F	

Critical	

Fractional	

Batch	



Trace	Element	Modelling	Short	Course	by	Julian	Pearce	

	 15	

2.6	Incremental	Melting	and	Melting	Columns	
	
	

	
	
Incremental	 melting	 is	 somewhere	 between	 batch	 melting	 and	 critical	
fractional	melting:	small	batches	of	magma	equilibrate	with	the	mantle	before	
extraction.	It	may	be	modelled	using	 the	batch	melting	equation	 for	each	
increment,	 recalculating	 mantle	 composition	 and	 mineralogy	 between	
increments.	 The	 composition	 is	 recalculated	 using	 the	 batch	 melting	
equation	in	Section	2.4.1,	i.e.	
	

𝑪𝒔
𝑪𝟎

=
𝑫𝒐 − 𝑷𝑭
𝟏− 𝑭

𝟏
𝑫𝒐 + 𝑭 𝟏− 𝑷 	

	
The	mineralogy	is	recalculated	using	the	expression:	
	

𝑿𝒊! =
𝑿𝒊𝒐 − 𝑭𝒊𝒏𝒄𝒑𝒊
𝟏− 𝑭𝒊𝒏𝒄

	

	
where	Xi°	are	the	composition	before	the	melting	increment	
Xi’	are	the	new	mass	fractions	following	extraction	of	the	melt	increment		
Finc	is	the	degree	of	melting	for	the	met	increment	
pi		are	the	reaction	coefficients	
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2.6.1	Incremental	Melting:	Calculation	Method	
	
Spinel	 lherzolite	 mantle	 containing	 10	 ppm	 of	 Sr	 is	 made	 up	 of	 60%	
olivine,	 25%	 orthopyroxene	 and	 15%	 clinopyroxene	 which	 melts	 in	
proportions	2:	1:	7.		
	
It	melts	in	two	stages.	The	first	by	10%	batch	melting,	the	second	by	a	further	
10%	batch	melting.	
	
Calculate	 the	 Sr	 content	 of	 the	 magma	 formed	 by	 20%	 incremental	 (2	 x	
10%)	melting	given	partition	coefficients	of	0.01	for	ol/l,	0.05	for	opx/l	and	
0.2	for	cpx/l.	
	

	

𝑪𝒍 =
𝟏𝟎

𝟎.𝟏+ 𝟎.𝟎𝟒𝟖𝟓− 𝟎.𝟏 ∗ 𝟎.𝟏𝟒𝟕 = 𝟕𝟒.𝟒 𝒑𝒑𝒎	
	
Calculate	the	new	mineral	proportions	(Xi’)	at	F=0.1:	
	
	
	
	
	
	
	
Calculate	the	new	mantle	composition	at	F=0.1:	
	

𝑪𝒔
𝑪𝒐

=
𝟏

𝟏− 𝑭 𝟏−
𝑷𝑭
𝑫𝒐

𝟏
𝑷
= 𝟐.𝟖𝟏 𝒑𝒑𝒎	

	
Repeat	the	calculation	using	the	batch	melting	equation:	
	

	

𝑪𝒍 =
𝟐.𝟖𝟏

𝟎.𝟏+ 𝟎.𝟎𝟑𝟕𝟔− 𝟎.𝟏 ∗ 𝟎.𝟏𝟒𝟕 = 𝟐𝟐.𝟗 𝒑𝒑𝒎	
	
The	pooled	melt	by	mass	balance	is	then:	
	

𝑪𝒍 =
𝟎.𝟏 ∗ 𝟕𝟒.𝟒+ 𝟎.𝟏 ∗ 𝟐𝟐.𝟗

𝟎.𝟏+ 𝟎.𝟏 = 𝟒𝟖.𝟔 𝒑𝒑𝒎	

	 Xi	 pi	 Ki/l	 piKi/l	 XiKi/l	
olivine	 0.6	 0.2	 0.01	 0.002	 0.006	
orthopyroxne	 0.25	 0.1	 0.05	 0.005	 0.0125	
clinopyroxene	 0.15	 0.7	 0.2	 0.14	 0.03	
	 	 	 	 P=0.147	 Do=0.0485	

	 Xi	 pi	 Xi’	
olivine	 0.6	 0.2	 0.644	
orthopyroxne	 0.25	 0.1	 0.267	
clinopyroxene	 0.15	 0.7	 0.089	
	 	 	 	

		 Xi	 pi	 Ki/l	 piKi/l	 XiKi/l	
olivine	 0.644	 0.2	 0.01	 0.002	 0.0064	
orthopyroxne	 0.267	 0.1	 0.05	 0.005	 0.013	
clinopyroxene	 0.089	 0.7	 0.20	 0.14	 0.0178	
		 		 		 		 0.147	 0.0376	
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2.6.2.	Melting	Columns	
	
Most	models	assume	that	incremental	melt	fractions	are	extracted	into	a	
channel	after	which	they	no	longer	react	with	the	residual	phases,	
	

	

	
	
	

To	model	melting	columns,	it	is	easiest	to	carry	out	the	calculation	method	in	
Section	2.6.1	but	for	small	batch	melting	increments	(e.g.	Finc=0.02),	each	
with	 recalculated	 values	 of	 Cs,	 and	Xo.	 In	a	melting	column,	 recalculation	
must	 be	based	 not	 only	 on	 the	 loss	 of	 melt,	 but	 also	 on	 the	 effects	 of	
changing	 pressure	 on	 mantle	 mineralogy.	 This	 is	 not	 difficult,	 but	 it	 is	
time-consuming,	and	so	beyond	the	scope	of	this	course.	
	

	
	
	

	 	

GPa	 Do	 P	
1.5	 0.13	 0.42	
2.5	 0.10	 0.34	
3.5	 0.47	 1.29	
4.5	 0.39	 0.77	
5.5	 0.31	 0.54	

gt	out 
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3.	Practical:	Modelling	Mantle	Melting	Using	EXCEL	
	

3.1	Batch	Melting	Exercise	
	
Task	1.	This	first	task	is	to	reproduce	the	Tables	and	plots	in	Section	2	that	
relate	to	batch	melting.	Start	by	opening	an	EXCEL	Spreadsheet.	Label	it	and	
remember	to	save	it	periodically!		
	
Now	rename	the	first	Worksheet	(Sheet1)	as	‘Batch	Melting’.		
	
Task	2.	Start	by	entering	the	known	data	into	part	of	the	grid:	
	

		 Xi	 pi	 Ki/l	 piKi/l	 XiKi/l	
olivine	 0.6	 0.2	 0.01	 		 		

orthopyroxene	 0.25	 0.1	 0.05	 		 		
clinopyroxene	 0.15	 0.7	 0.20	 		 		

		 		 		 		 P=		 Do=		

	
Calculate	the	final	two	columns	using	the	equations	from	Section	2.2.	Then	
sum	them	and	put	the	sum	into	the	grid	squares	marked	P=	and	Do=.	Check	
that	your	calculations	are	correct	by	comparison	with	the	grid	in	Section	2.2.	
	
Task	 3.	 Now	 set	 up	 a	 partial	 melting	 grid	 with	 the	 first	 column	 having	
increasing	degree	of	melting	(F)	from	0.01	(1%)	to	0.2	(20%)	and	the	second	
column	 calculating	 the	 Sr	 concentration	 (see	 below)	 for	 degrees	 of	melting	
from	1	to	20%	using	the	batch	melting	equation:		
	

𝑪𝒍
𝑪𝟎

=
𝟏

𝑭+𝑫𝒐 − 𝑭𝑷
	

	
F	 Cl(Sr)	

0.01	 	
0.02	 	
0.03	 	
0.04	 	
0.05	 	
0.06	 	
etc	 etc.	
0.20	

		
	
[note	that	recalculations	are	needed	if	one	of	the	mantle	minerals	melts	out;	
this	does	not	apply	here]	
	
Task	4.	Make	a	plot	of	Sr	concentration	against	degree	of	melting	(F)	as	in	
Section	2.4	and	check	that	it	matches	the	batch	melting	graph	in	that	Section.	
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3.2	Fractional	Melting	Exercise	
	
Task	 1.	 The	 aim	 is	 to	 repeat	 the	 exercise	 but	 now	 for	 fractional	 melting	
(where	melt	is	separated	from	the	mantle	as	soon	as	it	forms)	
	
Start	by	creating	a	new	worksheet		(click	on	‘+’)	and	label	it		‘Fr.	Melting’.	
	
Task	2.	Copy	and	paste	the	data	box	from	the	“Batch	Melting”	worksheet	onto	
the	“Fr.	Melting”	worksheet.	Use	the	fractional	melting	equation	(reproduced	
below)	to	produce	the	equivalent	grid	with	columns	for	F	and	Cl.	

𝑪𝒍
𝑪𝒐

=
𝟏
𝑭 𝟏− 𝟏−

𝑷𝑭
𝑫𝒐

𝟏
𝑷
	

The	 difference	 between	 this	 and	 batch	melting	 is	 the	 greater	 complexity	 of	
the	equations.	As	explained	in	the	Section	2.4,	my	recommendation	is	break	
the	equation	into	parts	as	that	makes	it	easier	to	identify	any	errors.		

	
The	Table	 in	Section	2.4	 (see	below,	without	 the	results	of	 the	calculations)	
shows	 the	 equation	 can	 be	 split	 into	 a	 number	 of	 columns.	 Repeat	 this	 (or	
write	a	single	equation	 if	you	wish)	 to	reproduce	 the	Table	and	check	 it	 for	
errors.		
	

F	 1/F	 1/P	 PF/Do	 CSr	
0.01	 	 	 	 	
0.02	 	 	 	 	
0.03	 	 	 	 	
0.04	 	 	 	 	
0.05	 	 	 	 	
0.06	 	 	 	 	
etc.	 	 	 	 	
0.20	 	 	 	 	

	
	
Task	 3.	Plot	 the	 fractional	melting	 trend	 for	 Sr	 and	 check	 it	 against	 the	
graph	in	Section	2.4.	
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3.3	Critical	Melting	Exercise		
	
Task	1,	As	critical	melting	is	simply	a	form	of	fractional	crystallization,	you	
can	continue	to	work	with	the	“Fr.	Xn”	worksheet.		
	
Task	2.	Copy	the	fractional	melting	data	box	onto	the	adjacent	space	on	the	
spreadsheet.	Insert	a	column	and	row	into	the	worksheet	as	in	Section	2.3	
and	reproduced	in	part	below.	The	added	row	is	for	the	trapped	melt,	and	the	
column	 for	 the	 recalculated	 proportions	 of	 phases.	 	 Take	 enter	 the	 mass	
proportion	of	0.02	for	melt	in	the	X’	column	and	complete	the	Table.	Check	
that	it	is	correct	by	comparing	it	with	the	Table	in	Section	2.3.	
	

		 Xi	 X’i	 pi	 Ki/l	 P=piKi/l	 Do=XiKi/l	
olivine	 0.60	 	 0.2	 0.01	 	 	

orthopyroxene	 0.25	 	 0.1	 0.05	 	 	
clinopyroxene	 0.15	 	 0.7	 0.20	 	 	

melt	 0		 	 	 	 	 	
		 		 		 		 		 P=	 D	=	

	
Task	3.	Now	use	your	values	for	P	and	D	o	to	complete	the	Table	for	the	Cl-F	
plot	 (below).	 Check	 against	 the	 Table	 in	 Section	 2.4	 to	 ensure	 that	 it	 is	
correct.		
	

F	 1/F	 1/P	 PF/Do	 Cl(Sr)	
0.01	 	 	 	 	
0.02	 	 	 	 	
0.03	 	 	 	 	
0.04	 	 	 	 	
0.05	 	 	 	 	
0.06	 	 	 	 	
0.07	 	 	 	 	
0.08	 	 	 	 	
0.09	 	 	 	 	
0.10	 	 	 	 	
0.11	 	 	 	 	
0.12	 	 	 	 	
0.13	 	 	 	 	
0.14	 	 	 	 	
0.15	 	 	 	 	
0.16	 	 	 	 	
0.17	 	 	 	 	
0.18	 	 	 	 	
0.19	 	 	 	 	
0.20	 	 	 	 	

	
	
Task	4.	Plot	the	graph	of	Cl	v	F	for	the	critical	melting	and	check	against	the	
plot	in	Section	2.4	to	ensure	that	it	is	correct.	
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3.3	Modelling	Mantle	Depletion	
	
Task	1.	Name	a	new	worksheet	‘Mantle’.		Your	aim	is	to	repeat	the	Exercises	
in	Section	2.5.	
	
Start	 by	 copying	 the	 “Batch	 Melting”	 data	 box	 into	 the	 ‘Depletion’	
spreadsheet.		
	
Task	2.	Calculate	 the	Sr	concentration	 in	 the	mantle	(originally	10	ppm)	
during	batch	melting	using	the	batch	melting	depletion	equation	(reproduced	
below):		
	

𝑪𝒔
𝑪𝟎

=
𝑫𝒐 − 𝑷𝑭
𝟏− 𝑭

𝟏
𝑫𝒐 + 𝑭 𝟏− 𝑷 	

	
Do	this	by	setting	up	and	completing	the	grid	below	using	Do,	P	and	F	from	the	
data	 box	 you	 pasted	 into	 the	 worksheet.	 Don’t	 forget	 to	 multiply	 by	 Co	 in	
calculating	the	final	column.	
	

F	 Do-PF	 1-F	 Do-F(1-P)	 Cl(Sr)	
0	 	 	 	 	

0.01	 	 	 	 	
0.02	 	 	 	 	
0.03	 	 	 	 	
Etc.	 	 	 	 	
0.20	 	 	 	 	

	
	
Task	3.	Plot	a	graph	of	Sr	in	the	mantle	v	degree	of	batch	melting.	Check	
it	against	the	graph	in	Section	2.5.2.	
	
Task	 4.	 Now	 insert	 the	 data	 box	 for	 critical	 melting	 from	 the	 ‘Fr.	 Xn”	
worksheet.	Using	what	you	have	learnt	so	far,	and	using	the	equation	below,	
attempt	to	plot	similar	trends	to	those	in	Task	3	but	for	pure	fractional	
melting	 and	 critical	 melting	 with	 a	 porosity	 of	 0.02.	 	 Check	 your	 plots	
against	the	graphs	in	Section	2.5.2.	
	

𝑪𝒔
𝑪𝒐

=
𝟏

𝟏− 𝑭 𝟏−
𝑷𝑭
𝑫𝒐

𝟏
𝑷
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Session	2:	Modelling	Magma	Chamber	Processes	

	
4.	Mixing	
	
Mixing	 is	 important	 in	magma	genesis.	As	shown	below,	 it	can	take	place	 in	
the	mantle	(mixing	of	magma	sources	such	as	a	subduction	component	and	a	
mantle	wedge)	or	in	 the	magma	chamber	 (mixing	of	magma	with	crust,	or	
mixing	of	two	magmas).		Here	we	will	model	mixing	of	magmas	in	a	magma	
chamber.	
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4.1	Magma	Chamber	Mixing	
	
The	simplest	way	to	calculate	the	composition	of	mixed	magmas	is	using	the	
mass	balance	equation.	Consider	the	mixing	of	a	basalt	and	rhyolite	magma.	
	

𝑪𝒎𝒊𝒙 = 𝑿𝒓𝒉𝒚𝑪𝒓𝒉𝒚 + 𝟏− 𝑿𝒓𝒉𝒚 𝑪𝒃𝒂𝒔	
	
where:	 Cbas,	 Crhy	 and	 Cmix	 are	 the	 concentrations	 of	 an	 element	 in	 basalt,	
rhyolite	and	the	mixture;	and	Xrhy	 is	the	mass	fractions	of	the	rhyolite	in	the	
basalt-rhyolite	mixture.	
	
For	example:	La	in	basalt	=	15	ppm	and	in	rhyolite	=100ppm.	Then	in	a	40:60	
mixture,	Lamix=	0.6.	100	+	0.4.	15	=	66	ppm	
	
In	EXCEL,	 it	 is	 a	 straightforward	 task	 to	 construct	 a	 grid	of	 the	 type	below.	
The	 end	member	 compositions	 are	 put	 in	 at	 top	 and	 bottom	 and	 the	mass	
balance	equation	used	to	calculate	the	intermediate	values.		

	
The	grid	can	then	be	used	to	plot	a	mixing	line,	such	as	that	below:		
	

	
	 	

1.0	
1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	
1.9	
2.0	

1.50	 1.60	 1.70	 1.80	 1.90	 2.00	

Tb/Yb	

La/Sm	

		 Xrhy	 La	 Sm	 Tb	 Yb	 La/Sm	 Tb/Yb	
basalt	 0.0	 15.0	 10	 10	 10	 1.50	 1.0	
		 0.1	 23.5	 14	 11	 10	 1.68	 1.1	
		 0.2	 32.0	 18	 12	 10	 1.78	 1.2	
		 0.3	 40.5	 22	 13	 10	 1.84	 1.3	
		 0.4	 49.0	 26	 14	 10	 1.88	 1.4	
		 0.5	 57.5	 30	 15	 10	 1.92	 1.5	
		 0.6	 66.0	 34	 16	 10	 1.94	 1.6	
		 0.7	 74.5	 38	 17	 10	 1.96	 1.7	
		 0.8	 83.0	 42	 18	 10	 1.98	 1.8	
		 0.9	 91.5	 46	 19	 10	 1.99	 1.9	
rhyolite	 1.0	 100.0	 50	 20	 10	 2.00	 2.0	
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4.2	Magma	Mixing	Equation	
	
The	general	two-component	mixing	equation	is	a	hyperbola:	
	

𝑨𝒙+ 𝑩𝒙𝒚+ 𝑪𝒚+𝑫 = 𝟎	
	
Where	x	and	y	are	two	variables	(elements	or	element	ratios),	and	A,	B,	C,	and	
D	are	coefficients	of	the	variables.	
	
For	plotting,	this	equation	can	be	re-arranged	to	give	y	as	a	function	of	x:	
	

𝒚 = −
𝑨𝒙+𝑫
𝑩𝒙+ 𝒄 	

	
Original	sources:	Vollmer	(1976);	Langmuir	et	al.	(1977).		
	
The	 solution	 to	 this	 equation	 is	 well-known	 and	 shown	 below.	 It	 looks	
complicated	but	is	actually	very	straightforward,	as	will	be	seen	
	

A=a
2
b
1
y
2
-	a

1
b
2
y
1
 

B=	a
1
b
2
-	a

2
b
1
 

C=a
2
b
1
x
1
-	a

1
b
2
x
2
 

D=a
1
b
2
x
2
y
1
-	a

2
b
1
x
1
y
2	

 
where	
 
a
1
=	denominator	of	y	in	end	member	1 

b
1
=	denominator	of	x	in	end-member	1 

a
2
=denominator	of	y	in	end-member	2 

b
2
=denominator	of	x	in	end-member	2 

x
1
=ratio	x	in	end-member	1 

y
1
=ratio	y	in	end-member	1 

x
2
=ratio	x	in	end-member	2 

x
2
=ratio	y	in	end-member	2 

	
	 	



Trace	Element	Modelling	Short	Course	by	Julian	Pearce	

	 25	

Taking	the	same	example	as	before,	but	with	different	ratios:	
	
Basalt:	La=15ppm;	Sm=10ppm;	Tb=10ppm;	Yb=10ppm	
Rhyolite:	La=100ppm;	Sm=50ppm;	Tb=20ppm;	Yb=10ppm	
	

La/Yb	(x)	v	Tb/Yb	(y) 
 
a
1
=	denominator	of	y	in	end	member	1....	Yb=10 

b
1
=	denominator	of	x	in	end-member	1....	Yb=10 

a
2
=denominator	of	y	in	end-member	2.....	Yb=10 

b
2
=denominator	of	x	in	end-member	2....	Yb=10 

x
1
=ratio	x	in	end-member	1.....	.La/Yb=1.5 

y
1
=ratio	y	in	end-member	1......	Tb/Yb	=1.0 

x
2
=ratio	x	in	end-member	2......	La/Yb=10.0 

y
2
=ratio	y	in	end-member	2......	Tb/Yb=2.0 

	
A=a

2
b
1
y
2
-	a

1
b
2
y
1													

=			100 
B=	a

1
b
2
-	a

2
b
1																						

=			0 
C=a

2
b
1
x
1
-	a

1
b
2
x
2													

=	-850 
D=a

1
b
2
x
2
y
1
-	a

2
b
1
x
1
y
2				
=	-100	

𝒚 = −
𝑨𝒙+𝑫
𝑩𝒙+ 𝒄 	

as	B=0	

𝒚 = −
𝑨
𝑪 𝒙−

𝑫
𝑪	

	
substituting	A,	C	and		D,	gives	the	equation:	
	

𝑻𝒃
𝒀𝒃 = 𝟎.𝟏𝟐

𝑳𝒂
𝒀𝒃− 𝟎.𝟏𝟐	

	
	

	
	

The	concept	of	straight	 line	mixing	 for	ratios	with	common	denominators	 is	
important	in	choosing	trace	element	and	isotope	projections 
	

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	

0	 5	 10	 15	

Tb
/Y
b	

La/Yb	
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5.	Crystallization	and	Assimilation	
	
Like	melting,	magma	chamber	modeling	can	be	simple,	but	 it	 then	becomes	
progressively	complicated	as	attempts	to	reproduce	reality	increase.	
	
Once	 thought	 to	 be	 closed	 systems	 that	 simply	 crystallized	 as	 they	 cooled,	
they	 are	 now	 known	 mostly	 to	 be	 open	 systems	 which	 involve	 not	 just	
crystallization	 but	 also	 recharge,	 assimilation	 and	 eruption,	 as	well	 as	
crystallization	 complexities	 such	magma-crystal	 reaction,	 filter-pressing,	
volatile	transfer	and	diffusion.	
	

	
	
	
	
	
	
	
	
	
	206Pb/204Pb ratios than melt already residing in the

magma body. In addition, recharge episodes generally
coincide with increasing MgO and Sr concentrations. If
the mantle source of the recharge magma is the same as
that of the minimally contaminated melt within the
magma body, the recharge magma probably underwent
some assimilation prior to intrusion into the magma
body. Based on this assumption, the high Sr concentra-
tion required for recharge magma suggests that plagio-
clase is not a stable liquidus phase in recharge magma.
Sr is therefore modelled as incompatible in the recharge
magma in EC3A and EC3B. Compatibility gradually
increases, and Sr is compatible in the recharge magma
in EC3C. An alternative explanation for the composition
of the recharge magma is that it may be derived from a
mantle source region compositionally distinct from that
of earlier partial melting episodes.
When the first pulse of recharge magma (labelled ‘1’ on

EC3A, EC3B and EC3C, Fig. 5b) is introduced,
87Sr/86Sr increases because the Sr-isotope composition
of the recharge magma is slightly more radiogenic than
that of the host magma. However, in EC3A, the 206Pb/
204Pb value of the recharge magma is similar to that of
the host magma (Table 6), leading to a virtually vertical
trajectory in 206Pb/204Pb–87Sr/86Sr space (Fig. 5a). In
EC3B, the recharge magma 206Pb/204Pb is similar to that

of the host magma, which leads to an approximately flat
206Pb/204Pb trend. In EC3C, the recharge magma is
relatively radiogenic, and recharge causes an increase in
206Pb/204Pb in melt within the magma body.
Sr is compatible in all three EC3 magma bodies, so [Sr]

initially decreases as country rock is heated to the solidus
from its initial temperature [see Bohrson & Spera (2001)
for further explanation of this phenomenon]. In EC3B,
recharge (designated by ‘1’ and ‘2’ on EC3B, Fig. 5b)
leads to an increase in [Sr] because Sr is incompatible in
the recharge magma. In contrast, although [Sr] in EC3A
is relatively high and the element behaves incompatibly
in the recharge magma, [Sr] does not increase during the
first recharge episode. This is because the mass of
recharge magma is relatively small and because Sr is
highly compatible in the host magma. Subsequent addi-
tions of recharge magma in EC3A and EC3B (Fig. 5b)
lead to increases in host magma of both [Sr] and
87Sr/86Sr because the proportions of recharge magma
are relatively large. In EC3C (Fig. 5b), even though Sr is
compatible in the recharge magma, [Sr] of melt in the
host magma body increases during the recharge episode
(‘1’ on EC3C, Fig. 5b) because [Sr] of recharge magma is
relatively high. In all EC3 models, Sr is incompatible in
the country rock. Despite this, when the magmatic system
is dominated by fractional crystallization and assimilation
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Fig. 5. (a) Plot of 206Pb/204Pb versus 87Sr/86Sr data and EC-RAFC trends (EC3A, EC3B and EC3C) for lineages 3A, 3B and 3C. (b) [Sr] ppm
versus 87Sr/86Sr data (SMLS lavas from the lower part of the Skye lava succession, Little Minch Sill Complex sills; see Fig. 2 for data references)
and results of EC-RAFC simulations (EC3A, EC3B and EC3C) for lineages L3A, L3B and L3C. Temperature drop for each symbol of the EC-
RAFC trend: 8!4"C (EC3A), 7!5"C (EC3B), 5!5"C (EC3C). Numbers on EC-RAFC trends show recharge episodes, and arrows represent
direction of falling magma temperature. (c) Schematic diagram of possible L3 magmatic system. Table 6 shows recharge magma masses and
temperatures of addition.
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5.1	Fractional	Crystallization	
	
	

	
	
Fractional	 crystallization	 is	 the	 same	 concept	 as	 fractional	 melting	 in	 that	
crystals	are	extracted	as	soon	as	they	form	without	re-equilibrating	with	the	
melt.	It	is	usually	modeled	using	the	Rayleigh	Fractionation	Equation:	
	

𝑪𝒍
𝑪𝒐

= 𝑭𝑫!𝟏	

	
As	before:	D=	bulk	distribution	coefficient		
F=	the	mass	fraction	of	melt	remaining	
Co	is	the	concentration	of	an	element	in	the	initial	magma	
Cl	is	the	concentration	in	the	final	magma		
Cs	(in	the	Figure	only)	is	the	concentration	in	the	residual	solid.	
	
One	 feature	 of	 this	 equation	 is	 that	 relationships	 are	 typically	 linear	 in	
logarithmic	space.	
	
For	example,	taking	logs	of	the	Rayleigh	equation	itself:	
	

𝑳𝒐𝒈 𝑪𝒍 = 𝑫− 𝟏 𝑳𝒐𝒈 𝑭 + 𝑳𝒐𝒈 𝑪𝒐 	
	
This	means	that	a	logarithmic	plot	of	Cl	against	F	will	be	linear	with	a	slope	
of	(D-1)	
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5.1.1	Element-Element	plots	
	
Element-element	and	element	ratio	plots	are	similarly	linear	in	logarithmic	
space.	To	see	why,	start	with	the	Rayleigh	equation:	
	

𝑪𝒍
𝑪𝒐

= 𝑭(𝑫!𝟏)	

Take	logs	for	elements	A	and	B	
	

𝑳𝒐𝒈 𝑪𝒍𝑨 − 𝑳𝒐𝒈 𝑪𝒐𝑨 = 𝑫𝑨 − 𝟏 𝑳𝒐𝒈 𝑭 	
	

𝑳𝒐𝒈 𝑪𝒍𝑩 − 𝑳𝒐𝒈 𝑪𝒐𝑩 = 𝑫𝑩 − 𝟏 𝑳𝒐𝒈 𝑭 	
	
Substitute	for	Log(F)	to	give	a	straight-line	equation,	i.e.	of	form	y=mx+c:	
	

𝑳𝒐𝒈 𝑪𝒍𝑨 =
𝑫𝑨 − 𝟏
𝑫𝑩 − 𝟏𝑳𝒐𝒈 𝑪𝒍𝑩 + 𝒄	

	
Thus	if	we	plot	two	elements	in	logarithmic	space,	we	get	a	straight	line	with	
a	slope	of	(DA-1)/(DB-1)	
	

	
	
We	 can	 therefore	 draw	 vectors	 for	 individual	 minerals	 and	 mineral	
assemblages	and	compare	these	with	observed	variations	(Pearce	&	Norry,	
1979).		
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Example:	A	basic	magma	containing	100	ppm	Sr	and	50	ppm	Zr	crystallizes	a	
mixture	 of	 20%	 olivine,	 30%	 clinopyroxene	 and	 50%	 plagioclase.	 Plot	 a	
graph	 of	 Sr	 v	 Zr	 showing	 vectors	 for	 the	 individual	 minerals	 and	 bulk	
crystallizing	assemblage.	 	Partition	coefficients	 for	basic	magmas	are,	 for	Sr:	
Kol/l=0.01;	Kcpx/l=0.2	&	Kpl/l=2.	For	Zr:	Kol/l=0.01;	Kcpx/l=0.15	&	Kpl/l=0.02.	
	
To	plot	vectors	using	EXCEL,	it	is	necessary	to	set	up	a	grid	of	the	sort	shown	
below	for	Sr.	The	top	three	rows	enable	the	individual	mineral	vectors	to	be	
drawn.	The	bottom	row	is	used	for	the	bulk	assemblage	vector.	The	Rayleigh	
equation	is	used	to	calculate	Cl	for	different	values	of	F.	Note	that	F	here	
refers	 to	melt	 remaining,	 so	F=1	 is	no	crystallization	and	F=0.5	 is	50%	of	
melt	remaining.	
	

	
Xi	 Ki	(Sr)	 Co(F=1)	 Cl	(F=0.75)	 Cl	(F=0.5)	

olivine	 0.2	 0.01	 300	 398.85	 595.86	
clinopyroxene	 0.3	 0.2	 300	 377.64	 522.33	
plagioclase	 0.5	 2	 300	 225.00	 150.00	

	 	
D(Sr)	

	 	 	ol.2+cpx.3+pl.5	
	

1.062	 300	 294.70	 287.38	
	
Repeating	this	grid	for	Zr	allows	the	plot	below	to	be	drawn.	
	

	
	
The	Figure	below	shows	a	real	example	of	how	the	fractionation	vectors	can	
help	 to	 interpret	 a	 volcanic	 sequence	 (From	 Pearce	 et	 al.,	 1990).	 Three	
distinctive	fractionation	trends	can	be	identified,	each	requiring	a	different	
mineral	assemblage.		
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5.3	Recharge	and	Fractional	Crystallization	(RFC)	
	

	
	
The	 concept	 and	modeling	 of	 open-system	magma	 chambers	 principally	
originates	from	O’Hara	(1977)	and	O’Hara	and	Mathews	(1981).		

They	 considered	 replenishment	 (recharge	 by	 magma	 addition)	 and	
assimilation	 of	 the	 magma	 chamber	 roof	 and	 demonstrated	 that	 trace	
elements	in	the	magma	can	reach	steady	stage	compositions	if	parameters	are	
constant.		
Although	they	quantified	the	process	with	some	long	equations,	it	is	arguably	
much	easier	to	model	now	using	spreadsheets	–	as	shown	here.	
	

5.3.1	The	FRE	Cycle	
	
To	carry	out	the	modeling,	we	need	to	define	the	FRE	cycle	where:	

F=	the	mass	fraction	of	melt	left	in	each	crystallization	cycle	
I=	the	mass	fraction	of	new	melt	added	during	the	replenishment	
E=the	mass	fraction	of	melt	lost	during	the	eruption	
If	F,	I	and	E	are	all	reported	as	mass	fractions	of	the	initial	magma,	then	the	
magma	chamber	will	have	 constant	mass	 if	 F+I-E=1.	 If	so,	the	equations	
are:		

	
𝑪𝒐 𝒕𝒐 𝑪𝟏 𝒇𝒊𝒓𝒔𝒕 𝒇𝒓.𝑿𝒏 𝒆𝒗𝒆𝒏𝒕 :  𝑪𝟏 = 𝑪𝒐𝑭𝑫!𝟏	

	

𝑪𝟏 𝒕𝒐 𝑪𝟐 𝒓𝒆𝒄𝒉𝒂𝒓𝒈𝒆 :  𝑪𝟐 =
𝑭𝑪𝟏 + 𝑰𝑪𝒐
𝑭+ 𝑰 	

	
𝑪𝟐 𝒕𝒐 𝑪𝟑 𝒆𝒓𝒖𝒑𝒕𝒊𝒐𝒏 :  𝑪𝟑 = 𝑪𝟐	

	

𝑪𝟑 𝒕𝒐 𝒏𝒆𝒙𝒕 𝒄𝒚𝒄𝒍𝒆 𝑪𝟏 (𝒔𝒖𝒃𝒔𝒆𝒒𝒖𝒆𝒏𝒕 𝒇𝒓.𝑿𝒏 𝒆𝒗𝒆𝒏𝒕𝒔).   𝑪𝟏! = 𝑪𝟑𝑭𝑫!𝟏	
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5.3.2	Recharge-Fractional	Crystallization	(RFC)	Modelling	
	
To	model	RFC	using	EXCEL,	first	set	up	a	data	box	with	values	for	Co,	D,	F,	I	
and	E.	Make	sure	F+I-E=1,	otherwise	the	maths	is	more	complicated.	
	
Then	set	up	the	grid,	as	shown	for	Zr	(Co=100ppm;	D=0.04)	below,		
	

	 	 	
		 cycle	1=Co	 		 		 		

	 	 	 	 then	=	C3	 C1	 C2	 C3	

	 	 	
cycle	 Comp.	 Fr	Xn	 Replen.	 Eruption	

Co	 100.00	
	

1	 100.00	 110.64	 109.12	 109.12	
D	 0.04	

	
2	 109.12	 120.74	 117.78	 117.78	

F	 0.90	
	

3	 117.78	 130.31	 125.98	 125.98	
I	 0.15	

	
4	 125.98	 139.39	 133.76	 133.76	

E	 0.05	
	

5	 133.76	 148.00	 141.14	 141.14	

	 	 	
6	 141.14	 156.17	 148.14	 148.14	

	 	 	
7	 148.14	 163.91	 154.78	 154.78	

	 	 	
8	 154.78	 171.26	 161.08	 161.08	

	 	 	
9	 161.08	 178.22	 167.05	 167.05	

	 	 	
10	 167.05	 184.83	 172.71	 172.71	

	
If	F,	I	and	E	are	constant,	and	the	grid	is	extended	to	large	numbers	of	cycles.	
Here,	the	magma	composition	reaches	a	steady	state	at	277	ppm	after	127	
cycles	and	276.71	at	173	cycles.	
	

126	 276.49	 305.92	 276.50	 276.50	
127	 276.50	 305.93	 276.51	 276.51	
128	 276.51	 305.95	 276.52	 276.52	

	
172	 276.70	 306.16	 276.71	 276.71	
173	 276.71	 306.16	 276.71	 276.71	
174	 276.71	 306.16	 276.71	 276.71	

	
The	plot	below	shows	the	change	in	Zr	concentration	with	increasing	number	
of	FRE	cycles.	The	result	can	be	 incompatible	 element	 enrichment	while	
the	magma	 composition	 stays	 basaltic.	Varying	F,	 I	 and	E	will,	of	 course,	
change	the	shape	of	the	curve	and	the	steady	state	value.	
	

	
	

	 	

100	

150	

200	

250	

300	

0	 50	 100	 150	 200	

Zr
	p
pm

	

no.	cycles	



Trace	Element	Modelling	Short	Course	by	Julian	Pearce	

	 32	

5.4	Assimilation	and	Fractional	Crystallization	(AFC)	
	
One	way	 to	model	 combined	assimilation	and	 fractional	 crystallization	 is	 to	
use	 FRE	 concept	 with	 R	 as	 the	 assimilant.	 However,	 the	 two	 processes	
typically	take	place	simultaneously	with	crystallization	providing	the	energy	
for	assimilation	and	it	is	possible	to	model	this	very	neatly	as	a	continuous	
process	using	the	method	of	DePaolo,	1981.	

	

	
	

𝑪𝒎
𝑪𝒐

= 𝑭!𝒛 +
𝒓

𝒓− 𝟏 .
𝑪𝒂
𝒛𝑪𝒐

. 𝟏− 𝑭!𝒛 	

	

where 𝒛 =
𝒓+𝑫− 𝟏
𝒓− 𝟏 	

	
and	r	=	rate	of	assimilation	(Ma)/rate	of	fractional	crystallization	(Mc)	

Co	and	Cm	=	initial	and	final	concentration	of	the	trace	element	

Ca	=	concentration	of	the	trace	element	in	the	assimilated	crust	
D	=	the	bulk	distribution	coefficient	of	the	trace	element	

Mo	and	Mm	=	initial	and	final	mass	of	magma		
F	=	mass	fraction	of	magma	remaining	=	Mm/Mo	

Dots	above	masses	indicate	rates	
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5.4.1	AFC	Modelling	
	
The	 key	 to	 carrying	 out	 the	 modeling	 is	 breaking	 down	 the	 complex	
equation	 to	 reduce	 errors.	 The	 grid	 below	 shows	 the	 recommended	
approach	(taking	Rb	as	an	example).	The	variables	are	placed	in	a	separate	
area	along	with	z,	which	is	calculated	from	D	and	r.	For	a	range	of	values	of	
F,	the	component	parts	are	then	combined	and	multiplied	by	Co	to	give	the	
melt	concentration.		
	
		 Rb	

	
F	 F^-z	 r/(r-1)	 Ca/zCo	 1-F^-z	 Cm	

Co	 7	
	

1	 1.00	 -0.43	 26.67	 0.00	 7.00	
r	 0.3	

	
0.9	 1.09	 -0.43	 26.67	 -0.09	 15.2	

D	 0.1	
	

0.8	 1.21	 -0.43	 26.67	 -0.21	 25.3	
Ca	 160	

	
0.7	 1.36	 -0.43	 26.67	 -0.36	 38.1	

		 		
	

0.6	 1.55	 -0.43	 26.67	 -0.55	 54.8	
z	 0.86	

	
0.5	 1.81	 -0.43	 26.67	 -0.81	 77.6	

	 	 	
0.4	 2.19	 -0.43	 26.67	 -1.19	 111	

	 	 	
0.3	 2.81	 -0.43	 26.67	 -1.81	 164	

	 	 	
0.2	 3.97	 -0.43	 26.67	 -2.97	 266	

	 	 	
0.1	 7.20	 -0.43	 26.67	 -6.20	 546	

	
	
The	 example	 below	 is	 an	 AFC	 model	 for	 volcanism	 in	 eastern	 Turkey	
(Pearce	 et	 al.,	 1990)	with	 r	 increasing	 from	 0	 to	 0.7.	 The	 samples	 follow	 a	
trend	 from	 uncontaminated	 magmas	 towards	 an	 upper	 crust	
contaminant	 with	 values	 of	 r	 (rate	 of	 contamination	 relative	 to	 rate	 of	
fractional	 crystallization)	 from	0	 to	0.7	 (0,	 0.025,	 0.5,	 then	1-7).	The	 trends	
are	 between	 possible	 primary	 magma	 2362	 and	 average	 Anatolian	 upper	
crust	(UC).		
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5.5	Energy-constrained	Recharge-Assimilation-Fractional	
Crystallization	(EC-RAFC)	
	

	
	
This	is	the	same	concept	as	RFC	but	incorporates	assimilation	and	deals	with	
the	 constraint	 of	 energy	 balance	 by	 incorporating	 the	 temperatures	 of	
country	rock	and	magmas	as	well	as	latent	heats	of	crystallization	and	fusion	
to	 ensure	 energy	 balance.	 This	 is	 beyond	 the	 scope	 of	 this	 course,	 but	 see		
https://earthref.org/EC-RAFC/.	Key	references	are	Spera	&	Bohrson	(2001),	
Bohrson	and	Spera	(2001)	and	Fowler	et	al.	(2004).	The	conceptual	diagram	
from	Spera	and	Bohrosn	(2001)	is	reproduced	below.	
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6.	Practical:	Modelling	Magma	Chamber	Processes	
Using	EXCEL	

	
6.1	Mixing	Exercises	
	
Task	 1,	Open	a	new	worksheet	and	 label	 it	“Mixing”.	Your	aim	 is	 to	repeat	
the	mixing	model	in	Section	4.1.	
	
Task	 2.	Enter	 the	grid	below,	which	contains	 the	basic	data	 for	mixing	of	a	
basalt	 and	 rhyolite	 magma.	 Fill	 in	 the	 missing	 information	 for	 the	
elements,	La,	Sm,	Tb	and	Yb,	using	the	mass	balance	equation	from	Section		
as	reproduced	below:	
	

𝑪𝒎𝒊𝒙 = 𝑿𝒓𝒉𝒚𝑪𝒓𝒉𝒚 + 𝟏− 𝑿𝒓𝒉𝒚 𝑪𝒃𝒂𝒔	
	
Check	your	element	concentrations	against	the	grid	in	Section	4.1.	
	

		 Xrhy	 La	 Sm	 Tb	 Yb	 La/Yb	 Tb/Yb	
basalt	 0	 15	 10	 10	 10	 		 				
		 0.1	 	 	 	 	 	 	
		 0.2	 	 	 	 	 	 	
		 0.3	 	 	 	 	 	 	
		 0.4	 	 	 	 	 	 	
		 0.5	 	 	 	 	 	 	
		 0.6	 	 	 	 	 	 	
		 0.7	 	 	 	 	 	 	
		 0.8	 	 	 	 	 	 	
		 0.9	 	 	 	 	 	 	

rhyolite	 1	 100	 50	 20	 10	 		 		
	
Task	 3.	 Calculate	 the	 ratios	 La/Yb	 and	 Tb/Yb	 and	 so	 fill	 the	 last	 two	
columns	of	the	grid.		
	
Then	plot	the	mixing	trend	of	La/Yb	v	Tb/Yb	and	check	against	the	plot	in	
Section	 4.2.	 Note	 that	 the	 common	 denominator	 (Yb)	 makes	 the	 trend	 a	
straight	line.	
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6.2	Fractional	Crystallization	Exercises	
	
Task	 1.	 Return	 to	 your	 first	 spreadsheet	 and	 set	 up	 a	 new	 worksheet	
entitled	 “Fr	 Xn”.	 The	 aim	here	 is	 to	draw	a	 fractional	melting	 trend	 for	 Sr	
against	Zr	in	basic	magmas	with	vectors	for	the	different	individual	minerals	
and	for	a	bulk	mineral	assemblage.		
	
Task	 2.	 Set	 up	 two	 grids	 containing	 the	 Sr	 v	 Zr	 data	 and	 determine	 the	
missing	 value	 for	 D,	 and	 the	 missing	 values	 for	 Cl	 using	 the	 Raleigh	
Fractionation	equation	(below).	Check	the	answer	for	the	upper	grid	against	
the	grid	in	Section	5.1.1.	
	

𝑪𝒍
𝑪𝒐

= 𝑭𝑫!𝟏	

	
		 Xi	 Ki	(Sr)	 Co(F=1)	 Cl	(F=0.75)	 Cl	(F=0.5)	
olivine	 0.2	 0.01	 300	 	 	
clinopyroxene	 0.3	 0.2	 300	 	 	
plagioclase	 0.5	 2	 300	 	 	
		 		 D(	Sr)	 		 	 	
ol+cpx+pl	 		 		 300	 	 	
	
		 Xi	 Ki	(Zr)	 Co(F=1)	 Cl	(F=0.75)	 Cl	(F=0.5)	
olivine	 0.2	 0.01	 200	 	 	
clinopyroxene	 0.3	 0.15	 200	 	 	
plagioclase	 0.5	 0.02	 200	 	 	
		 		 D	(Zr)	 		 	 	
ol+cpx+pl	 		

	
200	 	 	

	
	
Task	3.	Plot	vectors	for	the	individual	minerals	and	bulk	mineral	assemblage	
using	a	log-log	plot	of	Sr	against	Zr.	Check	your	plot	against	the	plot	in	Section	
5.1.1.	
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6.3	Recharge	and	Fractional	Crystallization	(RFC)	Exercises	
	
Task	1.	Return	to	your	first	spreadsheet	and	set	up	a	new	sheet	entitled	“R-
AFC”.	 The	 aim	 here	 is	 to	 reproduce	 the	 RFC	 model	 for	 the	 evolving	 Zr	
concentration	in	a	magma	chamber	using	RFC	modeling.	
	
Task	2.	The	grid	below	is	taken	from	Section	5.3.1	but	with	the	results	of	the	
calculations	missing	and	some	hints	on	how	to	calculate	the	concentrations	in	
each	 cell.	 Complete	 the	 grid	 using	 the	 methodology	 from	 Section	 5.3.	
Check	the	values	against	the	completed	grid	in	Section	5.3.1.	Then	extend	the	
grid	until	the	composition	reaches	its	steady	state.	
	

	
	

𝑪𝒐 𝒕𝒐 𝑪𝟏 𝒇𝒊𝒓𝒔𝒕 𝒇𝒓.𝑿𝒏 𝒆𝒗𝒆𝒏𝒕 :  𝑪𝟏 = 𝑪𝒐𝑭𝑫!𝟏	
	

𝑪𝟏 𝒕𝒐 𝑪𝟐 𝒓𝒆𝒄𝒉𝒂𝒓𝒈𝒆 :  𝑪𝟐 =
𝑭𝑪𝟏 + 𝑰𝑪𝒐
𝑭+ 𝑰 	

	
𝑪𝟐 𝒕𝒐 𝑪𝟑 𝒆𝒓𝒖𝒑𝒕𝒊𝒐𝒏 :  𝑪𝟑 = 𝑪𝟐	

	

𝑪𝟑 𝒕𝒐 𝒏𝒆𝒙𝒕 𝒄𝒚𝒄𝒍𝒆 𝑪𝟏 (𝒔𝒖𝒃𝒔𝒆𝒒𝒖𝒆𝒏𝒕 𝒇𝒓.𝑿𝒏 𝒆𝒗𝒆𝒏𝒕𝒔.   𝑪𝟏! = 𝑪𝟑𝑭𝑫!𝟏	
	

	 	 	
		 Magma	 Ci	 C2	 C3	

	 	 	
cycle	 Comp.	 Fr	Xn	 Replen.	 Eruption	

Co	 100.00	
	

1	 =Co	 =Co	to	C1	 =C1	to	C2	 =C2	to	C3	
D	 0.04	

	
2	 =C3	(cy1)	 =C3	to	C1	 =C1	to	C2	 =C2	to	C3	

F	 0.90	
	

3	 =C3	(cy2)	 =C3	to	C1	 =C1	to	C2	 =C2	to	C3	
I	 0.15	

	
4	 	 	 	 	

E	 0.05	
	

5	 	 	 	 	

	 	 	
6	etc	 	 	 	 	

	
Task	3.	Plot	the	graph	of	Zr	against	the	number	of	cycles	to	see	how	the	
value	converges	to	a	steady	state	composition.	Check	it	against	the	plot	in	
Section	5.3.2.		
	
Task	4.	Experiment	by	varying	F,	E,	I	and	D	and	see	how	the	concentration	
of	Zr	changes	as	the	magma	chamber	evolves.	 	
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6.4	 Assimilation	 and	 Fractional	 Crystallization	 (AFC)	
Exercises	
	
Task	1:	Open	a	new	worksheet	and	label	it	“AFC”.	Your	aim	is	to	repeat	the	
mixing	model	in	Section	5.4.		
	
Task		2:	Below	is	the	grid	used	in	Section	5.4	to	model	the	AFC	process	for	Rb	
with	the	calculated	values	missing.	Complete	 the	 grid	 yourself	 and	 check	
for	 errors	 against	 the	 full	 grid	 in	 Section	 5.4.	 Don’t	 forget	 to	multiply	 the	
components	by	Co.	
	
		 Rb	

	
F	 F^-z	 r/(r-1)	 Ca/zCo	 1-F^-z	 Cm	

Co	 7	
	

1	 	 	 	 	 	
r	 0.6	

	
0.9	 	 	 	 	 	

D	 0.1	
	

0.8	 	 	 	 	 	
Ca	 160	

	
0.7	 	 	 	 	 	

		 		
	

0.6	 	 	 	 	 	
z	 		

	
0.5	 	 	 	 	 	

	 	 	
0.4	 	 	 	 	 	

	 	 	
0.3	 	 	 	 	 	

	 	 	
0.2	 	 	 	 	 	

	 	 	
0.1	 	 	 	 	 	

	
The	equations	are	reproduced	below.	Of	course,	you	can	write	it	in	EXCEL	as	
one	equation	if	you	wish:	in	that	case,	just	input	the	value	for	z	and	fill	in	the	
Cm	column	without	the	intermediate	steps.	
	

𝑪𝒎
𝑪𝒐

= 𝑭!𝒛 +
𝒓

𝒓− 𝟏 .
𝑪𝒂
𝒛𝑪𝒐

. 𝟏− 𝑭!𝒛 	

	

where 𝒛 =
𝒓+𝑫− 𝟏
𝒓− 𝟏 	

	
Task	 3.	 If	 you	wish,	 you	can	also	reproduce	 the	 Rb/Nb	 v	 Rb	 diagram	 in	
Section	 5.4.1.	To	do	 this,	 copy	and	paste	 the	Rb	grid	alongside	 the	existing	
grid	and	edit	 it	 so	 that	 it	has	 the	values	 for	Nb	(Co=10;	D=0.1;	Ca=20).	Then	
add	a	column	to	the	Rb	grid	with	Rb/Nb	and	make	the	plot	for	one	or	more	
chosen	values	of	r.	Check	it	against	the	original	diagram	
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